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The integration of aircraft maneuver characteristics into an optimal taxiway scheduling
solution is challenging due to the uncertainties that are intrinsic to ramp area aircraft
trajectories. To address the challenge, we build a stochastic model of ramp area aircraft
trajectories that is used to generate a probabilistic measure of conflict within the Charlotte
Douglas International Airport (CLT) ramp area. Parameters of the conflict distributions
are estimated and passed to a Mixed Integer Linear Program that solves for an optimal
taxiway schedule constrained to be conflict free in the presence of trajectory uncertainties.
Here we extend our previous research by accounting for departing and arriving aircraft
whereas our prior formulation only accounted for departing aircraft.

I. Introduction

Airport runways and taxiways have been identified as a bottleneck of the National Airspace System,
and the major inhibiting factor for serving an increasing air traffic demand. In order to keep up with the
increase of traffic density, new techniques are required to increase airport throughput while maintaining safe
separation constraints. Since key airports that accommodate a large portion of traffic operate at or close to
their maximum capacity, an optimization of runway and taxiway operations is necessary.1 However, once
their operations are improved by an optimal taxiway schedule, its execution ultimately depends on the ramp
controllers who control gate push backs and the aircraft maneuvers within the ramp area.2

Most of the previous taxiway scheduling research has focused on modeling an airport as a graph, i.e., a
connected network, with aircraft travelling along the graph edges. In order to solve the optimization problem
on the graph authors have used genetic algorithms,3,4 Mixed Integer Linear Programs (MILPs),5 hybrids
of these,6,7 constrained search algorithms,8 and generalized dynamic programming algorithms.9 The MILP
approach has been used10,11,12,13,14,15,16,17 to optimize the routing and scheduling of airport surface traffic.
The approach has been applied18,19 where an optimization model is formulated for taxi scheduling at Dallas-
Fort Worth International Airport (DFW). Similar work20 has formulated the problem to include uncertainties
related to constraint satisfaction while uncertainties in aircraft taxiing has been considered in.21,22,23 These
previous works have addressed uncertainties in the active movement area (runways and taxiways), but do
not consider the ramp area. Ramp area aircraft have been incorporated in,24,25 but the trajectories are
considered to be deterministic. This paper attempts to address the integration of uncertain ramp area
aircraft trajectories with a state-of-the-art optimal taxiway scheduler. To the best of our knowledge, this
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research is the first attempt to address the taxiway scheduler problem assuming stochastic ramp area aircraft
trajectories.26

In this paper we develop a general methodology to integrate uncertain ramp area aircraft trajectories
within the framework of an optimal taxiway scheduling problem. In our previous work26 we designed a
scaled down robot experiment to generate data that was used as input to a stochastic model of aircraft
trajectories. Using the stochastic aircraft trajectories we computed a probabilistic measure of conflicts
among departing aircraft within the DFW airport ramp area. While in this paper we apply a similar
approach to the Charlotte Douglas International Airport (CLT) ramp area, here we extend our previous
work by a simultaneous consideration of departing and arriving aircraft. Moreover, the layout of the CLT
ramp area presents new challenges due to the unique geometric constraints and high density of aircraft.

The main difficulty in the integration of ramp area aircraft maneuvers into an optimal taxiway scheduling
solution is in uncertainties of ramp area trajectories. Unlike aircraft maneuvers on taxiways, ramp area
aircraft maneuvers are frequently not confined to well-defined trajectories. The shape and timing of the
trajectories are subject to uncertainties resulting from pilots decisions as well as other factors involved in ramp
area operations, which can impede an optimal taxiway schedule plan. To account for these uncertainties,
we model the trajectories as stochastic processes. However, ramp area trajectory data that could be used
to build maneuver models are not readily available mainly due to the lack of surveillance data in the ramp
area.

To address the lack of data, we collect the critical data on how a human operator navigates an aircraft
within the ramp area using an inexpensive scaled down wheeled robot experiment. We use e-puck robots27

controlled by a human operator to simulate the movement of aircraft from the gate to the taxiway spot and
collect the trajectory data with a standard webcam. The data is then processed in MATLAB to provide
a time series of position and heading angle measurements of the simulated aircraft. By using the robot
experiments, we are in position to go beyond the limits imposed by the lack of surveillance data and are able
to collect realistic data that is physical in nature and includes variabilities due to human pilots.

The collected data is critical because it is used to estimate parameters of our stochastic model of aircraft
trajectories. The stochastic trajectories replicate the statistical properties of the simulated aircraft data and
allow us to find optimal taxiway schedules that account for uncertainties generated from the presence of a
human pilot. Finally, our work demonstrates the utilization of spatiotemporal data that could be captured
from ramp area surveillance equipment if it existed. It is unlikely that airports will invest in the surveillance
system unless its usefulness to the efficiency of operations can be shown.

This paper is organized as follows. In section II, we formulate the problem under consideration. In
section III, we provide information regarding specific operational procedures at the CLT airport. Then, in
section IV, we describe the methodology for our stochastic model of aircraft trajectories. We present data
associated with the sampled trajectories and conflict distributions in section V. Next, in section VI, we
provide the mathematical formulation of the Mixed Integer Linear Program and in section VII we provide
illustrative examples. In the last section VIII, we conclude with a discussion of our findings and provide
directions for future work.

II. Problem Formulation

Departing aircraft i is parked at a gate. Upon receiving the push back clearance, a tug (operated by
ground crew) pushes back the aircraft from the gate. At the end of the push back procedure, the aircraft
stops and the tug disengages. This stop period lasts for some time during which the pilot goes through a
checklist and then starts the aircraft engine(s). When ready, the pilot requests taxi approval, and after the
approval, the aircraft taxies until arriving at time ti at the terminal node (P1), as shown Fig 1. During
the departing maneuvers, the duration of the trajectory, the transitions over the motion phases, and the
trajectory path are determined by human operators and are stochastic in nature.

Arriving aircraft i begins its trajectory at the initial node (P2), see Fig 1. After being released from node
P2 at time ti, the aircraft taxies to the assigned gate. During the arriving maneuvers the duration of the
trajectory and the trajectory path are considered to be stochastic.

The ramp area is defined as the aircraft moving area between the taxiway spots and the gates. For
both departures and arrivals, the locations of the initial node and the terminal node in our model define
a boundary between the domain where trajectories are well-defined and the domain where trajectories are
stochastic. In this paper, we assume the graph extends beyond the taxiway spot to include the blue and
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Figure 1. Center alley of the CLT airport. The gates under consideration are highlighted in red and include
gates B6, B8, B10, C7, C9 and C11. Departing aircraft push back from their gates, enter into an uncertain
stopped period, and then taxi to the merge node P1. Arriving aircraft are released from the merge node P2
and taxi to their assigned gates.

yellow structure roadways contained within the ramp area.
The uncertain nature of ramp area trajectories between gates and initial/terminal nodes can can impede

upon an optimal schedule that is defined on the graph. It is possible to compute a feasible schedule on
the graph where aircraft will have to slow down or stop along their route to avoid a loss of separation in
the ramp area. In contrast, we consider computing an optimal schedule on the graph that anticipates the
uncertainty in such a way that every aircraft can proceed along their route without having to slow down or
stop for other traffic.

Modeling trajectories as stochastic processes, we generate a probabilistic measure of conflict among
aircraft i and j defined by their relative schedule tj − ti. A conflict ratio is estimated by fixing the relative
schedule of the two aircraft and computing the ratio of conflicting trajectories to the total number of sampled
feasible trajectories. Conflicts are defined when trajectories come into close spatial proximity along their
route. The conflict distribution is estimated by computing a conflict ratio at every whole second, see Fig 5.
We use the conflict distributions to calculate conservative conflict separation constraints that provide for safe
separation in the presence of trajectory uncertainties. The constraints are conservative in nature because
they ensure a zero ratio of conflict.

The conservative separation constraints are integrated into an optimization problem on the graph that
outputs a scheduled time ti at the node P1/P2 for every departing/arriving aircraft. The computed schedule
is constrained to optimize the flow of surface traffic such that every aircraft i can proceed along the route
without having to slow down or stop for other traffic.

For departure aircraft i to proceed unimpeded, it is critical that the aircraft arrive at the terminal node
P1 (boundary between the ramp area and the graph) at the scheduled time ti. In order to aid ramp area
controllers in meeting the scheduled times, we consider computing the feasible push back time window for
each departing aircraft. The push back window is defined by the range between the earliest feasible push
back time tS and latest feasible push back time tF . Initiating the push back within the bounds [tS , tF ]
ensures there exists a feasible trajectory that arrives at the terminal node P1 at the scheduled time ti, as
required by the optimal schedule.
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III. CLT Airport Surface Operations

In this paper, we consider the center alley of the CLT ramp area with the terminal B on the left and
terminal C on the right, see Fig. 1. The gates under analysis are highlighted in red and include B6, B8, B10,
C7, C9 and C11. Each gate that we consider can either contain an aircraft ready for departure or receive an
arrival aircraft if not currently occupied. We assume departing flights exit the ramp area at taxiway spot 2
and arriving flights enter the ramp are at taxiway spot 4. At CLT, taxiing aircraft can enter or leave the
ramp area through the other spots depending on the runway used, in addition to the taxi routes we are
considering in this paper.

Departure flights begin their trajectories by pushing back from their gates, entering an uncertain waiting
period, followed by taxiing to spot 2. The taxiway spot is used as a hold short node and aircraft are required
to receive approval from controllers before transitioning between the ramp area and FAA taxiway. Along
the taxi route to spot 2, departing aircraft travel over the ramp area merge node P1, see Fig. 1. The ramp
area merge node P1 is introduced under an assumption that between merge node P1 and spot 2 there exists
a well-defined roadway for the aircraft to follow. In this paper, departing aircraft are not held after arriving
at node P1 and are allowed to proceed along the route to spot 2 without having to slow down or stop.
Therefore, we assume that providing separation for departing aircraft along the route from their gates to
merge node P1 ensures separation along the entire route from their gates to taxiway spot 2.

Arrival flights enter the ramp area at taxiway spot 4 and taxi to their assigned gates through the center
alley. Arrival trajectories follow the well-defined yellow structure from spot 4 to merge node P2. After
arriving at P2, arrival aircraft are released into the center alley and taxi to their gates. We assume that
providing the necessary separation for arriving aircraft along the route from merge node P2 to their gates
ensures separation along the entire route from spot 4 to their gates.

IV. Methodology

Data related to aircraft ramp area trajectories are not available, or the existing data contains only the
average value of trajectory duration. The available information is not sufficient to capture the evolution of
individual aircraft trajectories. To account for this we use an inexpensive robot experiment setup where the
movement of a Boeing 747-400 (Boeing 747)28 is simulated within the ramp area.26 Data from experiments
are captured on video and processed in MATLAB to provide positions and orientations of simulated aircraft
in time.

Collecting this data for multiple trajectories provides a distribution over the continuous interval of time
that a trajectory can spend in the discrete states such as push back, stop, and taxi.26 We assume that the
time spent in each discrete state is defined by a gamma distribution of the form

X ∼ Γ(kq, ωq) (1)

with shape parameter kq and scale parameter ωq. Using the MATLAB function gamfit, we estimate parame-
ters that fit the data from our robot experiments. The estimated gamma distributions for aircraft departure
trajectories are depicted in Fig. 2.

Our data captures the influence of a human operator and we use the collected data to fit parameters of our
stochastic model of aircraft trajectories. Once the model is defined we use it to sample29,30 a large number
of realistic trajectories. The sampled trajectories are used to build a probabilistic measure of conflict within
the ramp area. After generating the measure of conflict, we calculate the necessary separation constraints
in time among aircraft that ensure conflict free trajectories within the ramp area.

A single ramp area departure trajectory for aircraft i is described by five discrete states q, q = 0, 1, .., 4.
Each discrete state is defined by the continuous time evolution of the aircraft i’s position and heading angle
described by xi, yi coordinates and θi, respectively:
For q = 0 (gate), q = 2 (stop), q = 4 (merge node P1):

dxi = 0, dyi = 0, dθi = 0 (2)

For q = 1 (push back):

dxi = −viP cos(θi)dt, dyi = −viP sin(θi)dt, dθi = −v
i
P

Ri
dt (3)
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Figure 2. Distribution of time spent in discrete states for departing trajectories. The time spent in push back,
wait, and taxi is shown in red, green, and blue, respectively.

where Ri is the radius of the circle of curvature that aircraft i is pushing back along and viP is the push back
velocity.

For q = 3 (taxi):

dxi = viT cos(θi)dt, dyi = viT sin(θi)dt, dθi = σidW i (4)

where dW i is an increment of a unit intensity Wiener process, σi is a scaling factor for the intensity of the
variations in the heading angle θi, and viT is the forward taxi velocity for aircraft i. In a similar fashion we can
define the three discrete states q defined by the continuous time evolution for an arriving aircraft i (q=0, 1, 2):

For q = 0 (merge node P2), q = 2 (gate)

dxi = 0, dyi = 0, dθi = 0 (5)

For q = 1 (taxi):

dxi = vi cos(θi)dt, dyi = vi sin(θi)dt, dθi = σidW i (6)

Transitions between discrete states are considered to be stochastic. In order to simulate a single departure
trajectory, we sample the times for states q = 1, 2, 3 from the gamma distribution that was fitted to the robot
experiment data. Transitions between the states are defined by the values of the sampled times. In general,
the times that we sample for the discrete states will never match exactly between two unique trajectories.
For the set of successful samples, this temporal uncertainty will produce a distribution over the trajectory
duration. This distribution in trajectory duration is directly influenced by the human operator.

In addition to the initial conditions and parameters, we also define a terminal condition the trajectory
sample must satisfy. Given that our trajectories are described by an uncontrolled stochastic processes, in
general we do not expect the departure (arrival) samples to terminate at the merge node P1 (gate). However,
if we sample enough departure (arrival) trajectories, we do expect for some samples to arrive at the merge
node P1 (gate) as desired. Conditioning the trajectories to terminate within the goal region provides a set
of feasible ramp area departure (arrival) trajectories that terminate (initiate) their trajectory at time ti at
merge node P1 (P2).

After sampling trajectories we estimate the probability density function for trajectory duration of aircraft
i in the absence of any other aircraft in the ramp area. We refer to this type of distribution as natural since
the aircraft is unimpeded. We are interested in computing push back windows for aircraft i such that the
aircraft arrives at node P1 at a scheduled time ti. Therefore, we enforce a terminal condition in time for
the sampled trajectories and this generates a distribution for the push back time. In addition, enforcing this
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Figure 3. Sampled departure trajectories. For each gate, we generate a family of feasible departure trajectories.
For each gate, the family of trajectories contains uncertainty within both the spatial path taken and trajectory
duration.

terminal condition in time provides us with a set of departing trajectories that all enter the FAA controlled
taxiway via spot 2, see Fig. 1, at the same time.

Using the family of trajectories defined by the natural distributions of aircraft i and j, we generate a
probabilistic measure of conflict. We compute the measure of conflict by fixing the terminal time of aircraft
i in time such that ti = 0. Next we fix the terminal time of aircraft j in time, e.g. tj = −200. Given the
relative schedule defined by tj − ti, there exists a family of trajectories for both aircraft i and j that push
back from their respective gates and taxi to merge node P1 as required.

For the relative schedule tj − ti, we sample a single trajectory from the family of trajectories for aircraft
i and j, measure their spatial proximity along the route, and provide a conflict flag if the aircraft lose
spatial separation. If we continue this process of randomly sampling from the family of trajectories with
fixed terminal times, we compute a conflict ratio for the relative separation in time at the taxiway spot,
see Algorithm 1. The fixed terminal times are considered for every whole second and the estimated conflict
distributions provide a measure of conflict at a resolution of 1 second, see Fig. 5.

V. Sampled Trajectories and Conflict Distributions

Aircraft trajectories sampled from the stochastic model are shown in Fig. 3 and Fig. 4. These sampled
trajectories are used to compute conflict distributions using Algorithm 1. The conflict distributions provide
a conflict ratio among aircraft i and j as a function of the difference between their merge node times, see
Fig. 5. In this figure we assume departing aircraft i always arrives at the merge node P1 at time ti = 0 and
departing aircraft j arrives at the merge node defined by the value on the horizontal axis.

For conflicts that arise between two aircraft that travel through the same merge node(departure vs depar-
ture or arrival vs arrival conflicts) there exists a well-defined sequence such that either aircraft i comes prior
to aircraft j, or vice versa. When aircraft i is followed by j, define the minimum-time separation constraint
δij(δ

∗
ij) that ensures departure (arrival) pairwise separation constraints. This value can be estimated from

the upper bound of the conflict distributions, see left image of Fig. 5. The value δji(δ
∗
ji) can be estimated

from the lower bound of the conflict distribution. The minimum-time separation constraints are defined as
strictly non-negative. Therefore, if departing aircraft i is followed by departing aircraft j we should separate
the aircraft at the merge node by the value δij , else we separate the aircraft by the value δji.

For conflicts that arise between two aircraft that do not travel through the same merge node(departure
vs arrival conflicts) there does not exist a well defined sequence, see right image of Fig. 5. In this figure we
assume departing aircraft i always arrives at the merge node P1 at time ti = 0 and arriving aircraft j is
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Figure 4. Sampled arrival trajectories. For each gate, we generate a family of feasible arrival trajectories. For
each gate, the family of trajectories contains uncertainty within both the spatial path taken and trajectory
duration.

released from the merge node P2 at the time defined by the value on the horizontal axis. Define the lower
bound separation constraint ∆LB

ij as the left boundary of the conflict distribution. Define the upper bound

separation constraint ∆UB
ij as the right boundary of the conflict distribution. Given that the values of ∆LB

ij

and ∆UB
ij can both be negative, i.e. whether using the lower or upper bound separation constraint we release

the arrival from P2 prior to the time that the departure is scheduled at node P1. Therefore, we can not
simply select which separation constraint to use defined by the sequencing of aircraft at the merge node as
we did before. This implies that to separate the aircraft we should release the arriving aircraft to the left of
the value ∆LB

ij or to the right of the value ∆UB
ij .

VI. Mixed Integer Linear Program (MILP)

Given a set of departing aircraft i ∈ D available to push back from their gates at time αi and a set
of arriving aircraft i ∈ A that are available to be released from node P2 into the ramp area at time βi,
we consider finding a sequence of merge node times ti that ensure conflict free trajectories. The optimal
sequence of merge node times is defined as the schedule that minimizes the sum of aircraft hold time for
both departing and arriving aircraft. The objective function is given by

min

[∑
i∈D

(
ti − (αi + |tS0

i |)
)

+
∑
i∈A

(ti − βi)
]

(7)

where tS0
i is the earliest feasible push back time for departing aircraft i such that the scheduled time ti = 0

is enforced. The value |tS0
i | is equal to the longest duration feasible trajectory that is sampled from the

stochastic model. For departing aircraft i, the difference between the scheduled terminal time ti and the
earliest available push back time plus duration of the longest feasible trajectory, (αi + |tS0

i |), describes the
hold time for the individual aircraft. Departing aircraft are only held at the gate. After being cleared to
push back, departing aircraft are not held and are assumed to begin the taxi when they finish spooling the
engines.

For arriving aircraft i, the difference between the scheduled time ti and the earliest available release time
βi describes the hold time for the individual aircraft. Arrival aircraft are assumed to be held at merge node
P2 prior to being released into the ramp area. Thus, within the objective function the total aircraft hold
time for departing and arriving aircraft are given by the summations.
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For all departing aircraft i ∈ D we introduce the constraint

ti − (αi + |tS0
i |) ≥0 ∀i ∈ D (8)

where this constraint ensures that for departing aircraft i the scheduled time of arrival ti at merge node P1
is greater than the earliest available push back time αi plus the duration of the longest feasible trajectory
|tS0
i |.

Similarly for all arriving aircraft i ∈ A we have the constraint

ti − βi ≥0 ∀i ∈ A (9)

which ensures that for arriving aircraft i the scheduled time ti that we release the aircraft from merge
node P2 into the ramp area is greater than the earliest time βi that the aircraft is available to be released.
Constraints (8) and (9) in conjunction ensure that the hold time of any individual departing or arriving
aircraft within the objective function is strictly non-negative, i.e., the minimum hold time for any aircraft i
is equal to zero.

For all departing aircraft i, j ∈ D we introduce a sequencing constraint defined at merge node P1 given
by

zij + zji =1 ∀i, j ∈ D (10)

where zij is a binary variable that is 1 if departing aircraft j follows departing aircraft i at merge node P1,
else zij = 0. For all departing aircraft i, j ∈ D we have the separation constraint

zij(tj − ti − δij) ≥0 ∀i, j ∈ D (11)

which ensures that if departing aircraft j follows departing aircraft i at merge node P1 they should be
separated by a minimum of δij , else the constraint is automatically satisfied. Given the sequencing constraint
defined in (10), the value δij should be non-negative else the constraint can not be satisfied.

Similarly for all arriving aircraft i, j ∈ A we introduce the sequencing constraint

Z∗ij + Z∗ji =1 ∀i, j ∈ A (12)

where Z∗ij is a binary variable that is 1 if arriving aircraft j follows arriving aircraft i at merge node P2, else
Z∗ij = 0. For all arriving aircraft i, j ∈ A we have the separation constraint

Z∗ij(tj − ti − δ∗ij) ≥0 ∀i, j ∈ A (13)

which ensures that if arriving aircraft j follows arriving aircraft i at merge node P2 they should be separated
by a minimum of δ∗ij , else the constraint is automatically satisfied. Given the sequencing constraint defined
in (12), the value δ∗ij should be non-negative else the constraint can not be satisfied.

For all departing aircraft i ∈ D and arriving aircraft j ∈ A we introduce the constraint

aLB
ij + aUB

ij =1 ∀i ∈ D, j ∈ A (14)

where aLB
ij is a binary variable that is 1 for departing aircraft i and arriving aircraft j if we release the

arriving aircraft j into the center alley to the left of the lower bound of the conflict with departing aircraft
i, see Fig. 5, else aLB

ij = 0. Similarly aUB
ij is a binary variable that is 1 for departing aircraft i and arriving

aircraft j if we release the arriving aircraft into the center aley to the right of the upper bound of the conflict
with departing aircraft i.

For all departing aircraft i ∈ D and arriving aircraft j ∈ A we have the separation constraint

aLB
ij (tj − ti −∆LB

ij ) ≤0 ∀i ∈ D, j ∈ A (15)

when aLB
ij = 1 this ensures the scheduled time tj that we release arriving aircraft j into the ramp area is

a minimum of ∆LB
ij prior to the scheduled terminal time ti that we require departing aircraft i to arrive at

merge node P1.
For all departing aircraft i ∈ D and arriving aircraft j ∈ A we also have the separation constraint

aUB
ij (tj − ti −∆UB

ij ) ≥0 ∀i ∈ D, j ∈ A (16)
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Algorithm 1 Conflict Distribution: Aircraft i vs Aircraft j

Assume ti = 0
Set N = 1,000
for tj = -200:1:200 do

for k = 1:N do
• Randomly sample aircraft i and j from their respective family of trajectories.
• Measure the spatial proximity of the aircraft along the route and provide a conflict flag if aircraft
lose spatial separation.

end for
• Return conflict ratio for the relative schedule tj − ti

end for
• Return conflict ratio for all relative schedules at a resolution of 1 second.

�LB
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Figure 5. Conflict distributions computed using Algorithm 1. Left: Conflict distribution for CLT departure
from gate B6(i) VS. CLT departure from gate B8(j). The terminal time of departing aircraft i is fixed at
time ti = 0 and the terminal time for departing aircraft j is given by the value on the horizontal axis. Right:
Conflict distribution for CLT departure from gate C9(i) VS. CLT arrival from gate B6(j). The terminal time
of departing aircraft i is fixed at time ti = 0 and the release time for arriving aircraft j is given by the value
on the horizontal axis.

when aUB
ij = 1 this ensures the scheduled time tj that we release arriving aircraft j into the ramp area is a

minimum of ∆UB
ij after the scheduled terminal time ti that we require departing aircraft i to arrive at merge

node P1.
This formulation solves for the optimal schedule that minimizes the summation of aircraft hold time while

also ensuring conflict free trajectories. The program is in the form of a Mixed Integer Quadratic Program
due to quadratic constraints (11), (13), and (15-16). In order to pass this program to a MILP solver we
linearize the quadratic constraints as

tj − ti − δij + (1− zij)M ≥0 ∀i, j ∈ D (17)

tj − ti − δ∗ij + (1− Z∗ij)M ≥0 ∀i, j ∈ A (18)

tj − ti −∆LB
ij − (1− aLB

ij )M ≤0 ∀i ∈ D, j ∈ A (19)

tj − ti −∆UB
ij + (1− aUB

ij )M ≥0 ∀i ∈ D, j ∈ A (20)

where the constant M is chosen to be sufficiently large. Constraints (17), (18), (19), (20) are linear separation
constraints that replace the quadratic constraints (11), (13), (15), (16), respectively. After formulating the
program as a MILP we solve for the optimal time schedule by utilizing the Gurobi Optimizer31 solver.
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Aircraft αi(βi) Merge Node Time: ti Aircraft Hold tS tF FCFS ti FCFS Hold

Departure: B6 5 174 21 26 59 153 0

Departure: B10 10 129 0 10 38 228 99

Arrival: C7 26 26 0 NA NA 229 203

Arrival: B8 45 169 124 NA NA 234 189

Departure: C9 65 309 93 158 187 369 218

Total Hold 238 709

Table 1. An optimal solution for CLT example scenario 1 containing three departing aircraft at gates B6, B10,
and C9 and two arriving aircraft that terminate their trajectories at gates B8 and C7. The earliest available
time αi or βi that aircraft i is available to initiate its trajectory is sampled from the uniform distribution
defined as U(0, 100). For departing trajectories the feasible window in time to initiate their push back is defined
by the values ts and tf . The scheduled times and aircraft hold for a FCFS scheduling approach are shown on
the right for comparison.

VII. MILP Example Solutions

In this section, we provide example solutions of the MILP. In order to output an optimal schedule the
first thing we do is to select the set of departing and arriving aircraft. For this paper we define a scenario as
a set of three departing aircraft and two arriving aircraft. After the departing (arriving) aircraft are defined,
we sample the parameters αi or βi for each aircraft i from the uniform distribution defined as U(0, 100).

For a departing aircraft with the scheduled time ti = 0, the earliest feasible push back time is defined by
tS0
i = −maxi (Ti) and the latest feasible push back time is defined by tF0

i = −mini (Ti) . The variable Ti
is the trajectory duration of aircraft i that is sampled from the stochastic model. Using the values tS0

i and
tF0
i , the push back bounds tSi and tFi for any given scheduled spot time ti can be computed as tSi = ti + tS0

i

and tFi = ti + tF0
i . All other necessary parameters for the MILP are computed from the conflict distributions

as previously mentioned.
The output of the program is a schedule of merge node times ti that minimizes the summation of aircraft

hold time. Furthermore, the model provides the feasible push back windows for each departing aircraft, as
shown in Table 1. The right hand side of Table 1 shows the scheduled times and aircraft hold for a First-Come,
First-Served (FCFS) scheduling approach. The FCSC scheduling approach is defined to schedule the aircraft
at the taxiway spot in the same sequence that the aircraft become available to initiate their trajectories. The
conservative conflict constraints are applied to the FCFS sequence of aircraft and the schedule is computed.
As can be seen in the table, the FCFS scheduling approach is sub-optimal in comparison to the MILP
approach.

The example scenario that we consider in Table 1 is defined by three departing aircraft at gates B6, B10,
and C9 and two arriving aircraft that terminate their trajectories at gates B8 and C7. For the given scenario,
the optimal schedule and the associated aircraft hold times are dependent upon the set of sampled earliest
available times αi and βi. For a different set of earliest available times αi and βi, the optimal schedule and
aircraft hold times can be quite different. For a given scenario (set of departing and arriving aircraft), we
would like to understand how our scheduling algorithm performs under a variety of different sets of earliest
available times.

In order to understand the overall performance of the MILP we fix a scenario, compute the optimal
schedule for many different sets of earliest available times, and then calculate the average hold times for each
aircraft, as seen in each sub figure in Fig. 6. Solutions for each scenario are computed for 300 randomly
sampled sets of earliest available input parameters and the average hold time for each aircraft within the
six different example scenarios is plotted. In the upper left most figure (scenario 1), the average hold time
for departing aircraft from gates B6, B10 and C9 are shown with blue bars while the average hold time for
arriving aircraft from gates B8 and C7 are shown with red bars. We apply the same analysis of averaging
the hold time over many different sampled sets of earliest available times and apply it to five additional
scenarios (sets of departing and arriving aircraft).
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Figure 6. Top: Example scenario 1, 2, and 3 from left to right. Bottom: Example scenario 4, 5 and 6 from left
to right. The average hold time for various departing (blue) and arriving (red) aircraft operating within the
CLT center alley. Each sub figure is defined by fixing a different scenario of three departing and two arriving
aircraft. The earliest available time αi or βi that aircraft i is available to initiate their trajectory is sampled
from the uniform distribution defined as U(0, 100).

VIII. Discussion

In this work we used sampling methods to build sets of feasible ramp area aircraft trajectories. These
sampled trajectories were used to compute conflict distributions among aircraft i and j. Once the conflict
distributions were computed, we estimated minimum-time separation constraints between any two aircraft i
and j. Using these separation constraints we formulated a MILP and solved the optimal taxiway scheduling
problem.

The separation constraints that we used in the MILP formulation are conservative in nature. The
constraints are conservative because providing the minimum-time separation at the taxiway spot ensures a
zero ratio of conflict. Using the conservative conflict constraints, we solved for the average hold time for six
different scenarios defined by three departing aircraft and two arriving aircraft.

For schedules that have a non-zero ratio of conflict, future work will include techniques that can eliminate
the conflicts between aircraft i and j by shrinking the push back time windows. Using these techniques, the
throughput of the conservative schedule can be improved. We would also like to improve upon the time data
that we use as input to the stochastic model of aircraft trajectories. To get more accurate time data, we
plan to use the data from real-time human-in-the-loop simulations performed at NASA Ames’ FutureFlight
Central.32
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